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Abstract

Nonstandard finite difference schemes are constructed for several important conservative oscillators.
These procedures combine the nonstandard methods of Mickens (J. Sound Vib. 240 (2001) 587) with a
discrete Hamilton’s principle.
r 2004 Elsevier Ltd. All rights reserved.
An ordinary differential equation modeling many of the important features of nonlinear
oscillations is [1]

€x þ o2x þ fx2
þ gx3 ¼ 0; (1)

where ðo; f ; gÞ are constant parameters. While analytical results based on perturbation methods
provide useful insights into the properties of the solutions for the case where the nonlinear terms
are small [2], numerical procedures are generally required when the nonlinear terms are large [3].
Previous work by Mickens [4], which was based on the use of a discrete energy function [5],
provided a finite-difference model for Eq. (1) that could be applied to the determination of
numerical solutions. The major task of this letter is to generalize these results [4] by combining
nonstandard finite-difference methods with a particular discretization of Hamilton’s principle to
see front matter r 2004 Elsevier Ltd. All rights reserved.
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obtain a new discrete finite-difference scheme for Eq. (1) that also turns out to be a symplectic
method [6]. (A concise introduction to the relevant references and related background
information on the general theory of symplectic integrators is given in Ref. [6, Chapter 6].)

To illustrate the general procedure, consider the simple harmonic oscillator (SHO)

€x þ x ¼ 0; (2)

which has the energy function [1]

Eðx; _xÞ ¼
1

2

� �
_x2 þ

1

2

� �
x2 ¼ constant: (3)

The corresponding Lagrange function is [1]

Lðx; _xÞ ¼
1

2

� �
_x2 �

1

2

� �
x2; (4)

which can be discretized as

Lðx; _xÞ ! Lðxn;xnþ1Þ; (5)

where

t ! tn ¼ hn; h ¼ Dt; xðtÞ ! xn (6)

and Lðxn; xnþ1Þ is given by the expression

Lðxn;xnþ1Þ ¼
1

2

� �
xnþ1 � xn

f

� �2

�
1

2

� �
ax2

nþ1 þ bxnþ1xn þ cx2
n

a þ b þ c

� �
; (7)

where ða; b; cÞ are positive parameters and f is a function of h. Previous work [5] has shown that
Lðxn;xnþ1Þ must satisfy the relation

Lðxn;xnþ1Þ ¼ Lðxnþ1;xnÞ: (8)

This result implies that a ¼ c: To proceed, the discrete modified Lagrange function must be
introduced; it is given by [6]

Lhðxn; xnþ1Þ ¼ hLðxn; xnþ1Þ; (9)

where h ¼ Dt is the time step-size. Note that the discrete expression for x2; i.e.,

x2 !
ax2

nþ1 þ bxnþ1xn þ ax2
n

2a þ b
(10)

is the most general one that can be written down which satisfies the requirement given by Eq. (8).
Putting all this together gives for Lhðxn; xnþ1Þ the result

Lhðxn;xnþ1Þ ¼
h

2

� �
xnþ1 � xn

f

� �2

�
h

2

� �
ax2

nþ1 þ bxnþ1xn þ ax2
n

2a þ b

� �
; (11)

where the denominator function [3], fðhÞ; has the property

fðhÞ ¼ h þ Oðh2
Þ: (12)
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The equation of motion for xn follows from the discrete Euler–Lagrange equations [6]

qLhðxn�1;xnÞ

qxn

þ
qLhðxn; xnþ1Þ

qxn

¼ 0: (13)

Substituting Eq. (11) into this relation gives

xnþ1 � 2xn þ xn�1

f2
þ

bxnþ1 þ 4axn þ bxn�1

2ð2a þ bÞ
¼ 0; (14)

which is the discrete finite-difference model for the SHO given by Eq. (2). Observe that it is a
linear, second-order difference equation and the linear x term, in Eq. (2), is modeled nonlocally,
i.e.,

x !
bxnþ1 þ 4axn þ bxn�1

2ð2a þ bÞ
: (15)

Also, note that this expression is invariant under the substitution

ðn þ 1Þ2ðn � 1Þ: (16)

This is the discrete version [5] of the time-reversal property of Eq. (2), i.e., Eq. (2) is invariant
under t ! ð�tÞ:

The corresponding discrete momentum is given by [6]

pn ¼ �
qLhðxn; xnþ1Þ

qxn

: (17)

Using Lh from Eq. (11) gives

pn ¼
xnþ1 � xn

DðhÞ
þ

h

2

� �
bxnþ1 þ 2axn

2a þ b

� �
; (18)

where

DðhÞ ¼
f2

ðhÞ

h
: (19)

(For the case where fðhÞ ¼ h; then DðhÞ ¼ h:) For standard numerical integration schemes, the
momentum is expressed by the first term in Eq. (18), namely, by a forward-Euler discrete
representation. Our nonstandard finite difference scheme combined with the symplectic Hamilton
principle gives a value for pn that is modified by the presence of a term of order h. Thus, in the
limit h ! 0; this expression reduces to the usual definition of the momentum. Also, Eq. (19) shows
that the denominator function [3] appearing in the discrete momentum is not, in general, fðhÞ; but
DðhÞ:

Returning to Eq. (1), an easy calculation gives the energy function [1]

Eðx; _xÞ ¼
1

2

� �
_x2 þ

o2

2

� �
x2 þ

f

3

� �
x3 þ

g

4

� �
x4 ¼ constant: (20)
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Likewise, the Lagrange function is [1]

Lðx; _xÞ ¼
1

2

� �
_x2 �

o2

2

� �
x2 �

f

3

� �
x3 �

g

4

� �
x4: (21)

From this latter expression a general, invariant under n2ðn þ 1Þ; discrete Lagrange function can
be constructed; it is

Lðxn;xnþ1Þ ¼
1

2

� �
xnþ1 � xn

f

� �2

�
o2

2

� �
aðx2

nþ1 þ x2
nÞ þ bxnþ1xn

2a þ b

� �

�
f

3

� �
a1ðx

3
nþ1 þ x3

nÞ þ b1ðx
2
nþ1xn þ xnþ1x2

nÞ

2ða1 þ b1Þ

� �

�
g

4

� � a2ðx
4
nþ1 þ x4

nÞ þ b2ðx
3
nþ1xn þ xnþ1x3

nÞ þ c2x2
nþ1x2

n

2a2 þ 2b2 þ c2

� �
; ð22Þ

where ða; b; a1; b1; a2; b2; c2Þ are nonnegative parameters. Applying Eqs. (9) and (13), the discrete
equation of motion can be determined and is given by

xnþ1 � 2xn þ xn�1

f2
þ o2 4axn þ bðxnþ1 þ xn�1Þ

2ð2a þ bÞ

� �

þ f
6a1x2

n þ b1½x
2
nþ1 þ x2

n�1 þ 2xnðxnþ1 þ xn�1Þ�

6ða1 þ b1Þ

� �

þ g
8a2x3

n þ b2½x
3
nþ1 þ 3x2

nðxnþ1 þ xn�1Þ þ x3
n�1� þ 2c2xnðx

2
nþ1 þ x2

n�1Þ

4ð2a2 þ 2b2 þ c2Þ

� �
¼ 0: ð23Þ

Likewise, the discrete momentum is determined by using Eqs. (8), (17), and (22); it is

pn ¼
xnþ1 � xn

DðhÞ
�

o2h

2

� �
2axn þ bxnþ1

2a þ b

� �
�

f h

3

� �
3a1x2

n þ b1ðxnþ1 þ 2xnÞxnþ1

2ða1 þ b1Þ

� �

�
gh

4

� �
4a2x3

n þ b2ðx
2
nþ1 þ 3x2

nÞxnþ1

2a2 þ 2b2 þ c2

� �
; ð24Þ

where DðhÞ is that of Eq. (19). Again, just as for the case of the SHO, both the equation of
motion and the momentum display a much more complex structure than discrete schemes based
on standard procedures. For example, the use of a forward-Euler scheme for the discrete
derivative and local forms for the other terms provides the following forms for the determination
of xn and pn [3]:

xnþ1 � 2xn þ xn�1

h2
þ o2xn þ fx2

n þ gx3
n ¼ 0; (25)

pn ¼
xnþ1 � xn

h
: (26)
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The use of nonstandard finite-difference techniques without the joint application of the discrete
Hamilton’s principle, as presented in Ref. [6], gives for Eq. (1), the discretization

xnþ1 � 2xn þ xn�1

f2
þ o2xn þ f

xnþ1 þ xn þ xn�1

3

� �
xn þ g

xnþ1 þ xn�1

2

� �
x2

n ¼ 0; (27)

pn ¼
xnþ1 � xn

f
: (28)

It is clearly seen that combining the nonstandard method with a discrete Hamilton principle,
which is symplectic, gives a much more complex equation of motion and expression for the
momentum. Also, note that the discretizations of Eqs. (25) and (27) are linear in xnþ1 and thus are
explicit, while the second-order, nonlinear finite-difference representation of Eq. (23) is implicit.

These methods can also be generalized to systems of coupled nonlinear oscillators. In general,
such derived schemes will be implicit in nature and have complex expressions for the various
momentum functions in comparison to the usual methods. An example illustrating this behavior
is the Hénon–Heiles system [7,8]. The Lagrange function is

Lðx; _x; y; _yÞ ¼
1

2

� �
ð _x2 þ _y2Þ �

1

2

� �
x2 þ y2 �

2

3

� �
y3

� �
� x2y (29)

and the equation of motion are

€x þ x þ 2xy ¼ 0; €y þ y � y2 þ x2 ¼ 0: (30)

Taking the discrete Lagrange function to be

Lhðxn;xnþ1; yn; ynþ1Þ ¼
h

2

� �
xnþ1 � xn

f

� �2

þ
ynþ1 � yn

f

� �2
" #

�
h

2

� �
ðxnþ1xn þ ynþ1ynÞ

þ
h

2

� �
2

3

� �
y2

nþ1yn þ ynþ1y2
n

2

� �
�

h

2

� �
xnþ1xnðynþ1 þ ynÞ; ð31Þ

the equations of motion for xn and yn can be determined from the expressions [6]

qLhðxn�1; xn; yn; yn�1Þ

qxn

þ
qLhðxn; ynþ1; yn; ynþ1Þ

qxn

¼ 0; (32a)

qLhðxn�1; xn; yn�1; ynÞ

qyn

þ
qLhðxn; xnþ1; yn; ynþ1Þ

qyn

¼ 0: (32b)

From Lhðxn; xnþ1; yn; yn�1Þ and these latter equations, a direct calculation gives

xnþ1 � 2xn þ xn�1

f2
þ

xnþ1 þ xn�1

2

� �
þ xnþ1

ynþ1 þ yn

2

� �
þ xn�1

yn þ yn�1

2

� �� �
¼ 0; (33)

ynþ1 � 2yn þ yn�1

f2
þ

ynþ1 þ yn�1

2

� �
�

y2
nþ1 þ 2ynðynþ1 þ yn�1Þ þ y2

n�1

6

� �

þ
xnþ1 þ xn�1

2

� �
xn ¼ 0; ð34Þ
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where the corresponding momentum expressions are

pðxÞ
n ¼

xnþ1 � xn

DðhÞ
þ

h

2

� �
ð1 þ ynþ1 þ ynÞxnþ1; (35a)

pðyÞ
n ¼

ynþ1 � yn

DðhÞ
þ

h

2

� �
1 �

1

3

� �
ðynþ1 þ 2ynÞ

� �
ynþ1 þ xnþ1xn

� �
; (35b)

and where DðhÞ is the same as that of Eq. (19).
To summarize, the previous work of Mickens [4], using nonstandard finite difference methods,

have been extended to include results on a symplectic integrator which comes from using a
discretized Hamilton principle [6]. This procedure was illustrated by first applying it to the simple
harmonic oscillator and then the general nonlinear conservative oscillator where the force
function is cubic in the displacement. An additional application was to the Hénon–Heiles system.
Finally, it should be noted that the major contribution of the nonstandard methods, as used by
Mickens [3,4] in his work, is to provide a general methodology for the construction of improved
discretized Lagrange functions.
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[7] M. Hénon, C. Heiles, The applicability of the third integral of motion: some numerical experiments,

The Astronomical Journal 69 (1964) 73–79.

[8] C. Letellier, E.M.A.M. Mendes, R.E. Mickens, Nonstandard discretization schemes applied to the conservative
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